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E L A S T I C  W A V E  P O L A R I Z A T I O N  A N D  V E L O C I T Y  I N  

M A T E R I A L S  W I T H  S T R E S S - I N D U C E D  A N I S O T R O P Y  

A. F. Glebov UDC 539.3 

Among experimental methods for studying the stressed state of natural and artificial materials considerable attention 

[1-17] is devoted to a group of methods based seismo- and acoustoelastic effects. The first attempts to formulate a common 
rigorous theory for acoustic wave propagation in an elastic material under pressure were made in the 1940s [1, 2]. In [3] 

expressions were obtained for the velocities of P- and S-waves propagating in a deformable isotropic body along and across 

a uniaxial load. Here even for small values of prior stresses it appeared necessary to consider the elasticity moduli of not only 
the second, but also the third order [4]. Nonlinear elasticity theory [4] for finite strains is taken as a basis by other researchers 

[5-17] analyzing the effect of  static stresses on elastic wave velocity. 
However, in spite of the considerable number of publications use of the polarization-kinematic characteristics of elastic 

waves for estimating stresses is still only in the initial stage. On the basis of the disturbance method [18, 19] approximate 
analytical expressions are obtained in this work for characteristics of phase velocities and polarization vectors for quasi- 
longitudinal andquasi-transverse waves propagating in materials with stress-induced anisotropy. Stress-induced anisotropy is 
understood here in a narrow sense as the capacity of elastic isotropic materials to acquire anisotropy of  acoustic properties with 

deformation, i.e., it is assumed that with zero strains anisotropy caused by the structural and substance composition may be 
ignored. 

The approximation equations obtained are required in estimating parameters of a complex stressed state and third order 
elasticity moduli. The possibility of using them is evaluated by comparing calculated results for precise and approximation 

equations. 
1. Piezoacoustic Tensor  and Piezoacoustic Constants. Phase velocities v and polarization vectors a = (at) for qP- 

and qS-waves are found as is known [11] by determining the natural values and natural vectors of  the acoustic tensor Lit: 

L a ,  , - o2u, = 0, L a = % , , n n ~  (1.1) 

(n is the unit vector of  the normal to the wave front). In a loaded material the elastic constants cij,k t mean effective elastic 
constants which are connected with the stress tensor tjk and with the tensor of piezoacoustic moduli Cmn,p q by well-known 
relationships [11] 

qj.,, = S~j., I + ~,,~,, t ,  = r ..... :Jet ~ 

,~x i o.~ ,~x, ox, 1 ( . ~  axp b , , ]  (1.2) 
Sq.~ = %,.~ o~,. o.~,, o.~p ,~q' %,, = 2~0~,, o~, - ) ' 

where x k are Lagrangian coordinates of the material subject to a complex-stressed state; ~k are Lagrangian coordinates of 
unstressed material; emn are strain tensor components; t~ik is Kronecker symbol. Here and subsequently values of elastic 

constants cij,k/, Sij,kt, Cmn,p q and stress Jik are normalized by the value of bulk density. 
Subsequently in order to distinguish the effect of a complex stressed state tjk on hydrostatic pressure (aSjk) we shall 

present all tensors in the form of the sum of two tensors one of which depends on the spherical part (e/3)/Sjk, and the other 
depends on the strain tensor deviator ejk: 

g~k -- (e/3)~j~ + ejk, e = e n + e,, + e33 = 0, 
t~, = aj ,(~) + ~ , (e jD.  (1 .3)  

Novosibirsk. Translated from Prikladnaya Mekhanika i Tektmicheskaya Fizika, No. 2, pp. 101-106, March-April, 
1994. Original article submitted May 12, 1993. 

0023-8944/94/3502-0257512.50 �9 1994 Plenum Publishing Corporation 257 



TABLE 1 

Material 

Granite (dry) [15] 
Granite (moist) [16] 

Polystyrene [31 
Pyrex glass [3] 
Armeo-iron [3] 

Iron [6] 
Copper [6] 
Steel [17] 

Water-oil emulsion 
[201 

GPa_._ - - - -  

~ 1 8 . ;  2,65 
29,7 [ 25, 2,66 

I 
2,89 I 1,3 1,06 
13,S I 27, 
11o I s~ 
113 I 81 
105 I 4~ 

115,8 [ 79, 

1,56 I 0 

-1330 

-34,64 
25,81 

-28,05 
-14,49 
-15,91 
-14,03 

- 1 5 5 6  

m 

6,5 
6,7 

65 
57 
,44 
.85 
,40 
71 

#S 

--42,34 
-123,0 

-0,41 
2,41 
2,18 

- -  1 , 8 0  

--3,65 
-0,62 

Proceeding from the representation given by Murnaghan [4] as a cubic form of the elastic potential ~; of  an isotropic material: 

1 + 2me3 2 + 2,ue2 _ 74~d + - 2reed + n D ,  (1.4) ~" = --Poe + 2 3 

where Po is the initial hydrostatic pressure corresponding to zero strains; ~,, /x are Lam6 constants; l, m, n are Murnaghan 

constants relating to the marked nonlinear nature of the dependence of stress on strains; e, d, D are three strain tensor 

invariants: 
e = S p ( ~ . )  = e n + ez~ + G~, 

3 

(: 2",'.) ' ' = - -  " ~  EIIE2~ ~" E22$33 "~ E33EII -- ~12 -- El3 ~ E23'~ 
~ , - t  ( 1 . 5 )  

2 2 2 
D = det(e~,) = et~eT.2e33 + 2et2etae2a - eHr - e22eta - e33et2, 

for piezoacoustic moduli Cmn,p q taking account of Eqs. (1.2)-(1.5) it is possible to obtain the following expression 
a2~ 

c ~ . N  - ~,  a~ - A,. , .t~ + M , ~ ( % ) ,  

M~.m(ej, ) = 2(1 - m / 3  + n/6)eS ,=5 m + (m - n/6)e(6=pS,~ + 5,, 6 p) + (1.6) 

(2m - n)(t~,, e M + ~Me,.,) + 

(n/2)(6,,ee,~ + 5, e,,e + r ep  + S e e  ). 

Now we shall assume that the previous stressed state with a sufficient degree of accuracy is only described by linear 

terms of the strain tensor; then after substituting Eqs. (1.6) in Eqs. (1.2) stress tensor tjk and tensor Sij,k t are written in the form 

tj~ = A.,,,,,,e,,,.; S0,,, = ~.~, + ~,k~' 

~.,~ = [~t + 2 (22 /3  + t - m / 3  + n / 6 ) e  ~oS,j + 

~ . , ,  = (22 + 2m - n ) ( ~ e , ,  + 5~%)  + 

(2/, + n/2)(Ge~, + ~j,e,, + G% + ~:.)" 

By placing Eqs. (1.7) in Eq. (i .1) for the piezoacoustic tensor Lit we have 

L~=L~ 
L ~  lit + (2 + 2tt + m -  n / 6 ) e ] b i l +  

[,1 +/~ + (42 + 4tt + 6l + m + n / 2 ) e / 3 1 n i n  t, 

L~ = (2/~ + n/2)e . ,  + (4/~ + n/2)~,,(e~n~n,) + 

2(l + i~ + m - n /4 ) (n ,nk% .4- ean,n~). 

(1.7) 

(1.8) 
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Fig. 1 

It is noted that the first term describes the change in acoustic tensor due to deformation of the volume, and the second 

defines development of acoustic anisotropy with shape deformation. On the basis of Hooke's law (1.7) dilation e and the strain 

deviator are connected with stress tensor by simple relationships 

tk = cr~k + %k, a = (,t + 2/3st)e, ~k = 2/~ejk. (1.9) 

By substituting Eq. (1.9) in Eqs. (1.8) for piezoacoustie tensor Lit we obtain 

L ~ = I/t + a~.o'k3,, + 1~l +St + (a e -  as)alnin I, 

L~ = 2/~sr,, + (1 + 2/3s)b~(rjknink) + (1.10) 

(t3 e - -  1 - -  4 f J s ) ( n , n k r k l  + r i k n k n , ) / 2 ,  

where Cep, c~S, tip, tS  ave piezoacoustic constants: 

a e = (%l + 10st + 61 + 4m)/(.~t2 + 2/0 , 

/3 e = (22 + 5/~ + 2m)/st ,  

a s = (32t + 6st + 3 m  - n l 2 ) / ( 3 2  + 9 4 0 ,  

~ = (4st + n)/(Sst). 

(1.11) 

It is noted that t p  = 2[aS(3k + 2/~)//z + 4 t s  - 1/2]/3. Given in Table 1 are values of piezoacoustic constants for 

some materials (1.11) calculated for an experimental study of elastic wave velocities with all-round and uniaxial loading [3, 

6, 15-17, 20]. 
2. Velocities and  Polarization Vectors of qP- and qS-Waves with Triaxial Loading. In this case phase velocities 

and polarization vectors of  qP- and qS-waves depend in a very complex way on the strain tensor deviator. It is assumed that 
shape deformation compared with overall deformation of the volume is a higher order effect (i.e., s >> ejk and Li/0 >> Li/e), 

then in Order to obtain approximate analytical expressions for phase velocities and polarization vectors of  qP- (o 3, ai3) and qS- 

waves (v 1, ail), (02, ai2 ) it is possible to use a linear approximation of the disturbance method [18, 19]: 

= D33, ~ = (Dn + Dn "" ~'(Z)n - Dll) 2 + 4(D12)2) -/2; (2.1) 

a,~ = b,, + t~(b,,sin r + t,,~cos r ) ,  

ai2 = -As in  (F - y)b~3 + {b~2cos (1 ~ - y) + b, lsin ([~ - y)}/cos I ~, (2.2) 

a,l = -Acos  (F - y)bz + {-basin ([~ - y) + biicos ([~ - ~,)}/cos [~; 
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tg 2y = 2 O n l ( D  n - Dn) , tg r = --A~sin 2(r - 7)/(2f~),  

n = - D , , ) '  + - 

3 3 

(2.3) 

(2.4) 
L k = l  i . l .k,/=l 

Here ";,s 2 = / z  + O~sa, ~,p2 = k + 2/~ + Otpa are characteristic values; b 1, b 2, b 3 are characteristic vectors of the piezoacoustic 

tensor Li O (phase velocities and polarization vectors of SV- and SH-, and P-waves in isotropic material): 

b,t = (cos ~o cos 0 ,  sin ~o cos 0 , - s i n  0), 

~: = ( - s i n  ~o,cos ~o,0), 

b~3 = n, = (cos ~o sin 0, sin ~o sin 0, cos 0). 
(2.5) 

In order to obtain approximate analytical expressions for the transit time of qP- and qS-waves in uniform material it 
is also possible to use the disturbance method [18, 19]: 

t ( i )  = + + r  tg = tg o = (2.6) 

(I = (lx, ly, lz) is the vector connecting the source and receiver). By substituting Eqs. (2.5) in Eq. (2.4), for elements of matrix 

Dnr we obtain 

O ,  = ~ + ~ s T ,  + (l + 2[3~)7"~3, Dr2 = ~sr~2 ,  

Dn = ~s + 2flsru + (l +'2/3s)T3~ , D u = ((fie - l ) / 2 )Tn ,  
3 (2.7) 

033 = ~ + fl, r33' Ol3 = ((fie - l ) / 2 ) ru ,  T = E ~-r,*bk," 
i , k - I  

Thus, on the basis of Eqs. (2.1)-(2.3), (2.7) approx~ate expressions for phase velocities and polarization vectors may be 
written in the form 

~s + a - , S S % k , , ~ k , t  = (T  n + 7"22 +_ ~ii7"lt _ Tza)2 + 4~2),  

tg F = T23/TI3 , tg 2 7 = 2 T u / ( T  n - T22), 

/% = [(,fie - 1 ) / ( ~  - ~s)]r//2, '7 = ~ ,  
tg F = -A2sin 2(;, - F)/(2E~), 

n = -  )lp, p = q(r , , -  T J  + 

(2.8) 

where v3(n ) and Vl,2(n ) arc characteristics of the velocities of  qP- and qS-waves in loaded material; vp, v s are velocities of 
P- and S-waves depending on the magnitude of hydrostatic pressure; ann is normal deviator stress operating on an area 

perpendicular to the propagation direction n; %lni and ~rn2n2 are maximum and minimum normal deviator stresses operating 

on areas with normals perpendicular to the propagation direction n; 71 is tangential deviator stress operating on an area 

perpendicular to the propagation direction n; r is tangential stress azimuth; p is maximum tangential deviator stress operating 

on areas with normals perpendicular to the propagation direction n; "r is azimuth of this tangential stress. It is noted that if fl 

= 0, then ~/ = r and I '  = 0. With known k and/~ for longitudinal wave velocities it is only possible to determine two third 

order elasticity moduli: l and m, and for transverse wave data it is only possible to determine two: m and n. 
On the basis of  the expression obtained for piezoacoustic tensor (1.10) values are calculated for the phase velocities 

)f quasi-longitudinal and quasi-transverse waves (Fig. 1) in a granite specimen with parameters vp = 5.5 kin/see, v s = 3.1 

kin/see, o0 = 2.66 g/cm 3, ap  = -1330 ,  a s = -268 , /3p  = -657 , /3  s - 1 2 3  with biaxial loading (axial pressure % = 40 

MPa, side pressure a 1 -- 20 MPa), and presented in Fig. 2 are the errors in calculating velocities by approximation Eqs. (2.8) 
and deviation of the polarization vector for a qP-wave in the propagation direction. Whence it is possible to conclude that with 

biaxial loading approximation expression (2.8) for a qSh-wave agrees with the accurate expression (a qSh-wave is a purely 

transverse Sh-wave), and for qP- and qSv-waves the approximation expressions coincide with accurate expressions in the 
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directions of the principal loading axes since in these directions they propagate purely longitudinally and purely transverse 
waves; the maximum errors in the calculations by approximation equations arise in directions which are 45 ~ from the directions 

of the principal loading axes. However, absolute values of the errors (Fig. 2) even with quite strong deviation of the stressed 

state from all-round compression (a 0 = 40 MPa, a 1 = 20 MPa) does not exceed 4 m/sec for qP- and 7 m/see for qSv-waves. 
Whence it is possible to see that the approximation obtained is quite accurate. 

In order to estimate the intensity of deviator stresses zij relative to normal stress 7"33 operating on a horizontal area, 
for this study of velocities (2.8) it is possible to use an equation 

awl - ,~ (w~t + w v + w33) 
r i l  = r33  21V33 --  | V i i  --  14122 ' 

where Wij are parameters of the elliptical approximation, characteristic of qP-wave velocity v3, or average velocities of qS- 

waves (v 1 + v2)/2. An estimate of absolute stress values may be found by additional measurements of normal stress 7"33 or 
piezoacoustic constant B. 

Thus, the relationship obtained in this work may serve as a theoretical basis for developing seismoacoustic methods 
in studying the complex stressed state of elastic materials. 
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